An Introduction to GPU Architecture and CUDA C/C++ Programming

Bin Chen
April 4, 2018
Research Computing Center
Outline

▪ Introduction to GPU architecture
▪ Introduction to CUDA programming model
▪ Using the GPU resources at the FSU/RCC
▪ Deep learning accelerated by GPUs
GPU-Computing

- **GPU**: Graphics Processing Unit
- **GPGPU**: General Purpose GPU.
- **GPU-accelerated computing**: is the use of a GPU together with a CPU to accelerate scientific, analytics, engineering, consumer, and enterprise applications.
- **CUDA**: Compute Unified Device Architecture
- **Remark**: GPU does NOT work by itself. It is used as a device of a CPU.
GPU Market Shares (Q4-2017)

<table>
<thead>
<tr>
<th>GPU Supplier</th>
<th>Market share this quarter</th>
<th>Market share last quarter</th>
<th>Market share last year</th>
</tr>
</thead>
<tbody>
<tr>
<td>AMD</td>
<td>33.7%</td>
<td>27.2%</td>
<td>29.5%</td>
</tr>
<tr>
<td>Nvidia</td>
<td>66.3%</td>
<td>72.8%</td>
<td>70.5%</td>
</tr>
<tr>
<td>Total</td>
<td>100%</td>
<td>100%</td>
<td>100%</td>
</tr>
</tbody>
</table>

Source: Jon Peddie Research

- We will be concentrate on NVIDIA GPU product
- The CUDA language was created by NVIDIA
NVIDIA GPU Product Families

- **Tegra**: mobile and embedded devices (e.g., phones)
- **GeForce**: consumer graphics (e.g., gaming)
- **Quadro**: professional visualization
- **Tesla**: high performance computing (Tesla M2050)

GTX 1080 Ti
Compute Capability (p1)

- GPU product family is classified using **Compute Capability**
- **Volta** class architecture has major version number 7
- **Pascal** class architecture has major version number 6
- **Maxwell** class architecture has major version number 5
- **Kepler** class architecture has major version number 3
- **Fermi** class architecture has major version number 2
- **Tesla** class architecture has major version number 1

Compute Capability: major.minor say, 6.1
Compute Capability (p2)

- GTX1080Ti key data:

<table>
<thead>
<tr>
<th>Brand Name</th>
<th>GTX1080 Ti</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compute Capability</td>
<td>6.1</td>
</tr>
<tr>
<td>Micro-Architecture</td>
<td>Pascal</td>
</tr>
<tr>
<td>Number Stream Multi-Processors</td>
<td>28</td>
</tr>
<tr>
<td>Number of CUDA Cores</td>
<td>3584</td>
</tr>
<tr>
<td>Boost Clock</td>
<td>1600 MHZ</td>
</tr>
<tr>
<td>Memory Capacity</td>
<td>11 GB</td>
</tr>
<tr>
<td>Memory Bandwidth</td>
<td>~484GBs</td>
</tr>
<tr>
<td>FP32 TFLOPS</td>
<td>~11.4 TFLOPS</td>
</tr>
</tbody>
</table>
GPU core VS CPU core

- **CPU core**: relatively heavy-weight, designed for complex control logic, optimized for sequential programs.

- **GPU core**: relatively light-weight, designed with simple control logic, optimized for data-parallel tasks, focusing on throughput of parallel programs.

- **CPU+GPU**: heterogeneous architecture
Heterogeneous Architecture

Multi-core CPU + Many-core GPU

Remark: GPU has its own memory, connect to GPU via PCI-express bus
Remark: Differentiate Multi-Core from Many-Core (Intel Phi co-processor)
CUDA Programming Model (p1)

- Divide your code into Host (CPU) and Device (GPU) Code
- Processing flow of a CUDA program:
 a. Copy data from CPU memory to GPU memory
 b. Invoke kernel to run on the GPU.
 c. Copy data back from GPU to CPU memory
 d. Release the GPU memory and reset the GPU.
- CUDA code file name extension .cu
- CUDA compiler: nvcc (it compiles .c, .cpp too!)
  ```
  $ nvcc -o a.out a.cu
  ```
The kernel function is run concurrently by many threads on the GPU.

CPU might or might not wait for GPU depending on synchronization.

Can have more than one kernel functions in your CUDA application.
2-Level Thread Hierarchy (p1)

- There are many threads, so they need to be managed.
- **Grid**: All threads spawned by a single kernel.
- Grid is made up of many thread blocks.
- A thread **block** is a group of threads which can cooperate
 - Intra-block synchronization
 - Shared memory within a block
- A thread finds its own unique id using two coordinates: `blockIdx` and `threadIdx`, for example (1D case):
 \[
 id = \text{threadIdx.x} + \text{blockIdx.x}\times\text{blockDim.x}
 \]
2-Level Thread Hierarchy (p2)

Example: 2D grid + 2D block
Hello World

```c
#include <stdio.h>

__global__ void helloFromGPU() {
    printf("Hello World from GPU thread %d\n", threadIdx.x);
}

int main(void) {
    helloFromGPU<<<1,16>>>();
    cudaDeviceSynchronize();
    return 0;
}
```

CUDA Hello World
First CUDA Kernel: show my id

```c
#include <stdio.h>
#include <cuda_runtime.h>

__global__ void checkIdx() {

    int tx = threadIdx.x;
    int ty = threadIdx.y;
    int tz = threadIdx.z;

    int bx = blockIdx.x;
    int by = blockIdx.y;
    int bz = blockIdx.z;

    printf("threadIdx (%d,%d,%d), gridIdx (%d,%d,%d)\n",
        tx,ty,tz,bx,by,bz);
}
```

An example Kernel function checkIdx()
First CUDA Code Example: main()

```c
int main()
{
    int nElem = 15;
    dim3 dimBlock(4, 1, 1);
    dim3 dimGrid((nElem + dimBlock.x - 1)/dimBlock.x, 1, 1);

    printf("blockdim = (%d, %d, %d)\n", dimBlock.x, dimBlock.y, dimBlock.z);
    printf("griddim = (%d, %d, %d)\n", dimGrid.x, dimGrid.y, dimGrid.z);

    checkIdx<<<dimGrid, dimBlock>>>();
    cudaDeviceReset();
    return 0;
}
```

Kernel function invocation: checkIdx<<<grid, block>>>();
GUDA Kernel Function

- Declaration Syntax:
  ```
  __global__ void name(arg1, arg2, ...) {
    function body;
  }
  ```
 - `__global__` is a function type qualifier.
- Kernel function is invoked by CPU, but run on GPU in many copies (one thread per copy).
- Kernel invoking Syntax:
  ```
  name<<<grid, block>>>(arg1, arg2, ...)
  ```
 both `grid`, `block` are of type `dim3`, e.g,
  ```
  dim3 gridDim(4,1,1);  dim3 blockDim(16,1,1);
  ```
GUDA Function Type Qualifiers

- Declaration Syntax:

  ```c
  __global__  void name1(arg1, arg2, ...){
    name2(arg1, arg2);  // invoke device function
  }

  __device__  double name2(arg1, arg2, ...){
    function body;
  }

  __host__    float name3(arg1, arg2, ...){
    function body;
  }
  ```

Host and device routines only run on CPU, and GPU respectively. **Global** declares kernel function, run on GPU, which can call device functions.
GUDA Kernel Function (again)

- What should be in the Kernel function?

  ```c
  for (i = 0; i < 1000; i++)
      C[i] = A[i] + B[i];
  ```

- `__global__ kernel (int* A, int* B, int* C) {
 id = threadIdx.x + blockIdx.x*blockDim.x;
 C[id] = A[id] + B[id];
 }

In essence, your for loop with for peeled off, but keep the things inside.

The key part is to map your data to threads (array indices).
GUDA Memory Operations

- How to move data between CPU and GPU?

  ```c
  cudaMalloc( (void**) &A_d, size_t n_bytes);
  cudaMemcpy(ptr_dest, ptr_src, n_bytes, direction);
  ```

- Where

 `ptr_dest`, `ptr_src` are destination/source pointers;

 `direction` can be

  ```c
  cudaMemcpyHostToDevice
  cudaMemcpyDeviceToHost
  cudaMemcpyDeviceToDevice
  ```

- How to free Cuda Memory?

  ```c
  cudaFree(A_d);
  ```
```c
int nElem = 1024;
size_t nbytes = nElem*sizeof(float);
float *A_h, *B_h, *C_h;
float *A_d, *B_d, *C_d;
int i;

A_h = (float*) malloc(nbytes);
B_h = (float*) malloc(nbytes);
C_h = (float*) malloc(nbytes);
init_data(A_h, nElem);
init_data(B_h, nElem);

cudaMalloc( (void **) &A_d, nbytes);
cudaMalloc( (void **) &B_d, nbytes);
cudaMalloc( (void **) &C_d, nbytes);

cudaMemcpy(A_d, A_h, nbytes, cudaMemcpyHostToDevice);
cudaMemcpy(B_d, B_h, nbytes, cudaMemcpyHostToDevice);

sum_1D<<<2, 512>>>(A_d, B_d, C_d, nElem);
cudaMemcpy(C_h, C_d, nbytes, cudaMemcpyDeviceToHost);
cudaFree(A_d);
cudaFree(B_d);
cudaFree(C_d);
```
Example: Sum two 1D arrays assuming 1D block and 1D grid: Here is the kernel routine sum_1D:

```c
__global__ void sum_1D(float* A_d, float* B_d, float* C_d, 
                        int size) {

    int tx = threadIdx.x;
    int bx = blockIdx.x;
    int id = tx + bx*blockDim.x;
    if (id < size) {
        C_d[id] = A_d[id] + B_d[id];
    }
    return;
}
```

The main function was already shown in the previous page
How to Compile CUDA Code?

Cuda `nvcc` compiler (cuda-9.0 at the RCC):

a. Pure C code: `a.c`

   ```
   $ nvcc -o a.out a.c
   ```

b. Single Cuda code: `a.cu`

   ```
   $ nvcc -arch sm_61 -O3 -o a.out a.cu
   ```

c. C and Cuda Mixed: `a.cu` and `b.c`

   ```
   $ gcc -o b.o -c b.c
   $ nvcc -o a.out b.o a.cu
   ```
Use GPU ON the HPC Cluster (p1)

Step 1: Load the cuda module

$ module load cuda

Step 2: Compile your cuda code

$ nvcc -o a.out a.cu

Step 3: Create a slurm job script

$ vi slurm.sub

Step 4: Submit your job.

$ sbatch slurm.sub

#!/bin/bash
#SBATCH -N 1
#SBATCH -n 1
#SBATCH -J "cuda-job"
#SBATCH -t 4:00:00
#SBATCH --gres=gpu:1
#SBATCH --mail-type=ALL

module load cuda
srun -n 1 sum1d
There is **NO** partition called `gpu_q` anymore!

Both partition “backfill/backfill2” has a few nodes with GPUs

Not all nodes of the above partitions have GPUs

```
#SBATCH  -p backfill
#SBATCH  --gres=gpu:[1-4]
```

The clock limit is **4 hours**.

```
#SBATCH -t 4:00:00
```

At least one node in “genacc_q” has GPUs (**14 days!**)

There is **no GPU** installed on the **login node**

```
srun -p backfill2  -t 30:00  -n 1 --gres=gpu:1 --pty /bin/bash
```
Querying GPU Devices

- How do I get information about the GPU on a node?
- To get number of GPU cards on a node:

  ```c
  cudaError_t cudaGetDeviceCount(int * dev_count);
  ```
- To get device properties of a device:

  ```c
  cudaDeviceProp devProp
  cudaGetDeviceProperties(&devProp, dev_number);
  printf("device name: %s", devProp.name);
  ```
- See following page for an example
#include <stdio.h>
#include <cuda_runtime.h>

int main(int argc, char ** argv){

 printf("%s running...
", argv[0]);
 int devCount;
 cudaGetDeviceCount(&devCount);
 printf("number of devices: %d\n", devCount);
 cudaDeviceProp devProp;
 cudaGetDeviceProperties(&devProp, 0);
 printf("maxThreadsPerBlock = %d\n", devProp.maxThreadsPerBlock);
 printf("max block dimension (%d, %d, %d)\n", devProp.maxThreadsDim[0],
 devProp.maxThreadsDim[1], devProp.maxThreadsDim[2]);
 printf("max grid dimension (%d, %d, %d)\n", devProp.maxGridSize[0],
 devProp.maxGridSize[1], devProp.maxGridSize[2]);

 return 0;
}
Monitoring GPU Activities

Do we have a GPU utility similar to the tool top in linux? Yes. `nvidia-smi`

```bash
bchen3@hpc-l36-5:~ $ nvidia-smi
Fri Mar 30 16:16:44 2018

+-----------------------------------------------------------------------------+
| NVIDIA-SMI 384.81  Driver Version: 384.81                                 |
+-----------------------------------------------------------------------------+
| GPU  Name     Persistence-M Bus-Id Disp.A | Volatile Uncorr. ECC |
| Fan Temp Perf Pwr:Usage/Cap | Memory-Usage | GPU-Util | Compute M. |
+-----------------------------------------------------------------------------+
| 0  GeForce GTX 108... Off  0:00.0 Off | N/A | | |
|  28%  32C P2   76W / 250W | 239MiB / 11172MiB | 24% | Default |
| 1  GeForce GTX 108... Off  0:00.0 Off | N/A |
|  28%  39C P2   64W / 250W | 339MiB / 11172MiB | 21% | Default |
| 2  GeForce GTX 108... Off  0:00.0 Off | N/A |
|  28%  37C P2   62W / 250W | 281MiB / 11172MiB | 9% | Default |
| 3  GeForce GTX 108... Off  0:00.0 Off | N/A |
|  28%  29C P0   56W / 250W | 0MiB / 11172MiB | 0% | Default |

+-----------------------------------------------------------------------------+
| Processes:  GPU  PID Type  Process name  GPU Memory |
|            |     | | | |
| GPU  PID Type  Process name  GPU Memory |
| 0  17213 C  ...c13m/execut/charm_022018a_md5a_hpc_gpu  229MiB |
| 1  26698 C  .../home/ewall/charm_032318a_rmsn_hpc_gpu  329MiB |
| 2  20109 C  .../home/ewall/charm_032318a_rmsn_hpc_gpu  271MiB |
+-----------------------------------------------------------------------------+
Timing My Kernel Code?

We can time a CUDA kernel by building a CPU timer.

```c
#include <stdio.h>
#include <stdlib.h>
#include <time.h>
#include <sys/time.h>
#include <cuda_runtime.h>

double cpuSecond() {
 double sec;
 struct timeval tp;
 gettimeofday(&tp, NULL);
 sec = (double) tp.tv_sec + (double) tp.tv_usec*1.e-6;
 return sec;
}
```
Timing My Kernel Code (2)?

Then we can time a kernel call by wrapping it by two `cpuSecond()` calls.

```c
iStart = cpuSecond();
sumMatrixOnGPU<<<grid, block>>>(A_d, B_d, C_d, nx, ny);
error = cudaPeekAtLastError();
if (error != cudaSuccess) {
 printf("GPU error: %s\n", cudaMemcpyErrorString(error));
 exit(-1);
}
cudaDeviceSynchronize();
iElaps = cpuSecond() - iStart;
printf("GPU Matrix SUM takes %10.4f seconds\n", iElaps);
```

Timing the CUDA kernel `sumMatrixOnGpu()`

The above code snippet also deals with CUDA errors…
CUDA Error Handling?

Here are 3 functions which help you debugging your CUDA code:

a. `cudaError_t cudaGetLastError(void);`
b. `cudaError_t cudaPeekAtLastError(void);`
c. `const char* cudaGetErrorString(cudaError_t error);`

What do they do?

a. return the last error code, and reset it to `cudaSuccess`.  
b. return the last error code, but do **NOT** reset it.  
c. convert error code to a readable error string.
Synchronizing the Device

You probably have noticed this line in the previous example

```cuda
cudaDeviceSynchronize();
```

a. Why we need this line?
b. What does it do?

Answers:

a. CUDA programming model is **asynchronous** between CPU and GPU.
b. The `cudaDeviceSynchronize()` force the CPU to wait for the kernel code to finish before moving on.
c. The CPU timer will fail if CPU does not wait for the kernel.
Thread Synchronization?

How about synchronization of all threads of a Kernel?

a. Threads within a block can be synchronized

```c
__syncthreads();
```

(see example near the end)

b. Threads of different blocks **CAN NOT** be synchronized.

They should **NOT** be (dead lock!).

c. Different blocks can be scheduled to start at different time by the GPU.
Thread Organization—Hardware view

- Software view:
  - grid of blocks,
  - blocks of threads
- Hardware view?
- Streaming Multi-Processor (SM) see the right
  - A GTX1080 Ti has 28 SMs.
  - Each SM has 128 cores.
  - $28 \times 128 = 3584$ cores
  - A warp = 32 consecutive threads
Thread Organization—Hardware view

- A thread block can be assigned to only one streaming multi-processor.
- One multi-processor can have many blocks assigned to it.
- Threads within a block are grouped into warps, each warp has 32 consecutive threads.
- Comment: number of threads in a block should be a multiple of 32 (the warp size).
- **Question**: How about a block with say, 8 or 16 threads?
- **Question**: A SM of GTX1080 has 128 cores, why a block can have thousands of threads?
Thread/Warp Divergence

- Threads of the same warp work in the **SIMT** mode
- **SIMT**: *single instruction multiple threads*
- Only one instruction can be executed at one time
- **Warp divergence**: when threads in the same warp are executing different instructions. For example,

```c
id = threadIdx.x;
if (id < 16) {
 printf("I take branch one");
} else {
 printf("I take branch two");
}
```

Performance will be degraded because of warp divergence.
Thread/Warp Divergence

- Performance will be degraded because of warp divergence.

50% Performance Loss
CUDA Memory Model

- Similar to thread hierarchy, GPU has a memory hierarchy, and CUDA expose a lot of this hierarchy to you.

CPU Memory Hierarchy
CUDA Memory Model

- Registers (threads)
- Shared Memory (block)
- Local Memory (threads)
- Constant Memory (Application)
- Global Memory (Application)
- Texture Memory (Application)

Fermi: 63 registers per thread
Kepler: 255 register per thread
Each SM has a L1 cache
Each device has a L2 cache
CUDA Memory Model

- Shared Memory + L1 cache = 64KB per SM (precious)
- Each Fermi GPU have 768KB L2 cache (precious)
- Local memory is off chip, and is on the device memory
- Access of local memory is sped up by L1/L2 cache.

**Question:** Which one is faster, shared or local memory?

**Answer:** shared memory
CUDA Variable Type Qualifiers

- Shared Memory (sit in the SM)
  ```
 __shared__ double a
  ```
- Global Memory (sit in Device memory)
  ```
 __device__ double a
  ```
- Constant Memory (sit in Device memory)
  ```
 __constant__ double a
  ```
- Registers (automatic)
- Local variables (automatic)
CUDA Variable Scope

Where to declare these many different types of variables?

a. `__global__` and `__constant__` outside of any function
b. registers/local/shared variables are declared in the kernel
CUDA Memory Model

**GPU Variable Type Qualifiers:**

<table>
<thead>
<tr>
<th>Variable Declaration</th>
<th>Memory</th>
<th>Scope</th>
<th>Lifetime</th>
</tr>
</thead>
<tbody>
<tr>
<td>Automatic variables other than arrays</td>
<td>Register</td>
<td>Thread</td>
<td>Kernel</td>
</tr>
<tr>
<td>Automatic array variables</td>
<td>Local</td>
<td>Thread</td>
<td>Kernel</td>
</tr>
<tr>
<td><strong>device</strong>, <strong>shared</strong>, int SharedVar;</td>
<td>Shared</td>
<td>Block</td>
<td>Kernel</td>
</tr>
<tr>
<td><strong>device</strong>, int GlobalVar;</td>
<td>Global</td>
<td>Grid</td>
<td>Application</td>
</tr>
<tr>
<td><strong>device</strong>, <strong>constant</strong>, int ConstVar;</td>
<td>Constant</td>
<td>Grid</td>
<td>Application</td>
</tr>
</tbody>
</table>

Remark: Local memory does not physically exist, it is put in the global memory by the compiler.
Local/Shared/Registers Example

A GPU local variable example (localVariable.cu):

```cpp
__global__ void kernel() {
 double a = 2.71828; // register variables, automatic
 double c[100]; // local variable, automatic
 __shared__ double b; // shared variable
 int tx = threadIdx.x; // register variable
 if (tx == 0) {
 b = 3.1415926f;
 }
 __syncthreads(); // run with/without this line
 printf("id = %d, a=%7.5f, b=%9.7f\n", tx, a, b);
}

int main() {
 kernel<<<1,8>>>();
 cudaDeviceReset();
 return 0;
}
```

To do: compile and run with/without __syncthreads() line.
Global Variable Example

A GPU global variable example (globleVariable.cu):

```c
#include <stdio.h>
#include <cuda_runtime.h>

__device__ float devData;

__global__ void checkGlobal() {
 printf("Device: devData = %f\n", devData);
 devData *= 2;
}

int main() {
 float value = 3.1415926f;
 cudaMemcpyToSymbol(devData, &value, sizeof(float));
 checkGlobal<<<1,1>>>();
 cudaMemcpyFromSymbol(&value, devData, sizeof(float));
 cudaDeviceReset();
 printf("CPU: now the value is %f\n", value);
 return 0;
}
```
Summary

- Heterogeneous programming model
- Thread hierarchy (blocks, grids; warps)
- Memory hierarchy (not enough details today)
- Racing Conditions/Atomic Operations (not covered)
- Tune CUDA code performance (not covered)
Deep Learning Neural Network

- A neural network with at least 2 hidden layers
- The hidden layers can be very wide (millions of hidden units)
- The width (# of units) varies from layer to layer.

A 4-layer deep neural network
Example: digit recognition

- Model: simple 1-layer neural network.
- Activation function:

\[
\text{softmax}(x)_i = \frac{\exp(x_i)}{\sum_j \exp(x_j)}
\]
Why IS GPU Ideal for Deep Learning?

- Simple floating point calculation (e.g., matrix operation)
- Special function unit (exponential function)
- A huge amount of brute force calculation
- Cuda library such as cuDNN (libcudnn.so)
- Framework such as Tensorflow (Python/C++), Keras, etc.

\[ a = \frac{1}{1 + e^{-z}} \]
Why IS GPU Ideal for Deep Learning? (p2)

- NVIDIA Volta GPUs dedicated for deep learning.

Figure 3. Tesla V100 Provides a Major Leap in Deep Learning Performance with New Tensor Cores

(picture from Volta User Guide)